IAQ.net Resources

EPA Building Air Quality Guide-1991

Issue link: https://hi.iaq.net/i/630729

Contents of this Issue

Navigation

Page 155 of 227

Moisture, Mold and Mildew 145 ■ source control (e.g., direct venting of moisture-generating activities such as showers) to the exterior ■ dilution of moisture-laden indoor air with outdoor air that is at a lower absolute humidity ■ dehumidification Note that dilution is only useful as a control strategy during heating periods, when cold outdoor air tends to contain less moisture. During cooling periods, outdoor air often contains as much moisture as indoor air. IDENTIFYING AND CORRECTING COMMON PROBLEMS FROM MOLD AND MILDEW Exterior Corners Exterior corners are common locations for mold and mildew growth in heating climates, and in poorly insulated buildings in cooling climates. They tend to be closer to the outdoor temperature than other parts of the building surface for one or more of the following reasons: ■ poor air circulation (interior) ■ wind-washing (exterior) ■ low insulation levels ■ greater surface area of heat loss Sometimes mold and mildew growth can be reduced by removing obstructions to airflow (e.g., rearranging furniture). Buildings with forced air heating systems and/or room ceiling fans tend to have fewer mold and mildew problems than buildings with less air movement, other factors being equal. "Set Back" Thermostats Set back thermostats are commonly used to reduce energy consumption during the heating season. Mold and mildew growth can occur when building temperatures are lowered during unoccupied periods. (Maintaining a room at too low a tempera- ture can have the same effect as a set back thermostat.) Mold and mildew can often HOW TO IDENTIFY THE CAUSE OF A MOLD AND MILDEW PROBLEM Mold and mildew are commonly found on the exterior wall surfaces of corner rooms in heating climate locations. An exposed corner room is likely to be significantly colder than adjoining rooms, so that it has a higher relative humidity (RH) than other rooms at the same water vapor pressure. If mold and mildew growth are found in a corner room, then relative humidities next to the room surfaces are above 70%. However, is the RH above 70% at the surfaces because the room is too cold or because there is too much moisture present (high water vapor pressure)? The amount of moisture in the room can be estimated by measuring both temperature and RH at the same location and at the same time. Suppose there are two cases. In the first case, assume that the RH is 30% and the temperature is 70°F in the middle of the room. The low RH at that temperature indicates that the water vapor pressure (or absolute humidity) is low. The high surface RH is probably due to room surfaces that are "too cold." Temperature is the dominating factor, and control strategies should involve increasing the temperature at cold room sur- faces. In the second case, assume that the RH is 50% and the temperature is 70°F in the middle of the room. The higher RH at that temperature indicates that the water vapor pressure is high and there is a relatively large amount of moisture in the air. The high surface RH is probably due to air that is "too moist." Humidity is the dominating factor, and control strategies should involve decreasing the moisture content of the indoor air. be controlled in heating climate locations by increasing interior temperatures during heating periods. Unfortunately, this also increases energy consumption and reduces relative humidity in the breathing zone, which can create discomfort. Air Conditioned Spaces The problems of mold and mildew can be as extensive in cooling climates as in heating climates. The same principles apply: either surfaces are too cold, moisture levels are too high, or both. A common example of mold growth in cooling climates can be found in rooms where conditioned "cold" air blows against the interior surface of an exterior wall. This condition, which may be due to poor duct design, diffuser location, or diffuser performance, creates a cold spot at the interior finish surfaces. A mold problem can occur within the wall cavity as outdoor air comes in contact with the cavity side of the cooled interior surface. It is a particu- lar problem in rooms decorated with low

Articles in this issue

Archives of this issue

view archives of IAQ.net Resources - EPA Building Air Quality Guide-1991